Algebraic Petri nets

Didier Buchs

Université de Genève

30 avril 2009
Algebraic Petri Nets

- Informal introduction
Algebraic Petri Nets

- Informal introduction
- APN Specification
Algebraic Petri Nets

- Informal introduction
- APN Specification
- Behavioral axioms
Algebraic Petri Nets

- Informal introduction
- APN Specification
- Behavioral axioms
- Examples
Algebraic Petri Nets

- Informal introduction
- APN Specification
- Behavioral axioms
- Examples
- Petri Net interpretation
Algebraic Petri Nets

- Informal introduction
- APN Specification
- Behavioral axioms
- Examples
- Petri Net interpretation
- Semantics
Algebraic Petri Nets

- Informal introduction
- APN Specification
- Behavioral axioms
- Examples
- Petri Net interpretation
- Semantics
- Equivalences
Algebraic Petri Nets

- Informal introduction
- APN Specification
- Behavioral axioms
- Examples
- Petri Net interpretation
- Semantics
- Equivalences
- Equivalences wrt Algebras
Elementary example

- Adds all token from place *numbers* and put the result into place *result*.
- Expected kind of verification : CTL Example :
 \[AF\{\text{numbers} = \emptyset\} \] : Eventually all tokens from *numbers* will be consumed. Namely the process terminates.
Formal and Mathematical basis
Formal and Mathematical basis

- Petri Nets + Algebraic abstract data types
 - Structure = Petri Net
 - Tokens = Algebraic values
 - Pre/Post Conditions = Algebraic terms attached to flow relation
 - Conditions
Formal and Mathematical basis

- Petri Nets + Algebraic abstract data types
 - Structure = Petri Net
 - Tokens = Algebraic values
 - Pre/Post Conditions = Algebraic terms attached to flow relation
 - Conditions

- Semantics as transition systems (labelled)
 - True Concurrency described by step semantics
 - Not finite branching
 - Label as transition name and variable binding
Formal and Mathematical basis (2)
Formal and Mathematical basis(2)

- Observational equivalences (Bisimulation)
 - Equivalence relation
 - Symmetric simulation
 - Hide internal states
 - Preserve branching
Observational equivalences (Bisimulation)
- Equivalence relation
- Symmetric simulation
- Hide internal states
- Preserve branching

Verification of properties
- Property expression based on temporal logic
- Model Checking algorithms
Observational equivalences (Bisimulation)
- Equivalence relation
- Symmetric simulation
- Hide internal states
- Preserve branching

Verification of properties
- Property expression based on temporal logic
- Model Checking algorithms

Implementation notions:
\[SP \models P \iff (\text{Sem}(SP) \Leftrightarrow \text{Sem}(P)|_{SP}) \]
Definition (Algebraic Petri net specification)

An *algebraic Petri net specification* is defined as
\(N - SPEC = \langle Spec, T, P, X, AX \rangle \), where:

- \(Spec = \langle \Sigma, X', E \rangle \) is an algebraic specification extended in \(\langle [\Sigma], X', E \rangle \), where \(\Sigma = \langle S, F \rangle \).
- \(T \) is the set of transition names.
- \(P \) is the set of place names, and we define a function \(\tau : P \rightarrow S \) which associates a sort to each place.
- \(AX \) is a set of axioms defined below.
Multiset of tokens

A place is a multiset of tokens, in order to model this bags of values are defined.
Given $\Sigma = \langle S, F \rangle$, we define new sorts and operations such as:

$S' = S \cup \{[s] | \forall s \in S\}$ and $F' = F \cup \{\epsilon : \rightarrow [s], - : s \rightarrow [s], - + : [s], [s] \rightarrow [s] | \forall s \in S\}$
forming the extended signature $[\Sigma] = \langle S', F' \rangle$

An extended algebra $[A]$ is naturally given to any $A \in Alg(\Sigma)$ that is:

$A[s] = \{ f : A_s \rightarrow \mathbb{N} \}$

$\epsilon_A(a) := 0$, $\forall a \in A$,

$-_A(a) = f$ s.t. $f(a_1) = 1$ if $a = a_1$, 0 otherwise, $\forall a_1 \in A$

$f_1 +_A f_2 = f_3$ s.t. $f_3(a) = f_1(a) + f_2(a)$, $\forall a \in A$
Definition (Algebraic Petri net axioms)

Given an algebraic Petri net $\text{N-SPEC} = \langle \text{Spec}, T, P, X, AX \rangle$, an axiom of AX is a 4-tuple $\langle t, Cond, In, Out \rangle$, s.t. :

- $t \in T$ is the transition name for which the axiom is defined.
- $Cond \subseteq T_{\Sigma, X} \times T_{\Sigma, X}$ is a set of equalities attached to transition name t for this axiom, which are satisfied iff all the relations $a = b$ of $Cond$ are satisfied.
- $In = (In_p)_{p \in P}$ is a P-sorted set of terms, s.t. $\forall p \in P, In_p \in (T_{\Sigma, X})[\tau(p)]$ is the label of the arc from place p to transition t.
- $Out = (Out_p)_{p \in P}$ is a P-sorted set of terms, s.t. $\forall p \in P, Out_p \in (T_{\Sigma, X})[\tau(p)]$ is the label of the arc from transition t to place p.
Syntactic description of the example

\[
\text{sum: } (c > 0) = \text{true } \Rightarrow \\
\text{numbers n, total s, counter c } \rightarrow \\
\text{total s + n, counter c -1;}
\]

\[
\text{end: } \text{counter 0, total s } \rightarrow \\
\text{result s;}
\]

Which is equivalent to :

\[
\text{end: } (c=0) = \text{true } \Rightarrow \\
\text{counter c, total s } \rightarrow \\
\text{result s;}
\]
Definition (Markings, initial marking, initially marked algebraic Petri net)

Given an algebra A, we define the set of markings $M^A = \{(S_p)_{p \in P}\}$ with $S_p \in [A][\tau(p)], p \in P$.

We call initial marking m_{init} a P-sorted set of terms of $(T[\Sigma, \emptyset])_{\tau(p)}, p \in P$.

Finally, an initially marked algebraic Petri net $N - \text{SPEC}$ is a couple $\langle N - \text{SPEC}, m_{\text{init}} \rangle$.
Petri Net interpretation

Instantiation of variables accordingly to the algebraic semantic domain.

\[
\text{sum: } (c > 0) = \text{true} \Rightarrow
\begin{align*}
\text{numbers } n, \text{ total } s, \text{ counter } c &\rightarrow \\
\text{total } s + n, \text{ counter } c -1;
\end{align*}
\]
Events and transition systems

Definition (Events)

Given a \(N - SPEC = \langle Spec, T, P, X, AX \rangle \), \(Spec = \langle \Sigma, X', AX' \rangle \) and \(A \) a \(\Sigma - algebra \). The events are \(E = T \times \{ I : X \rightarrow A \} \) i.e. its transition name and interpretation.

Definition (Transition system)

A transition system with labels is a relation : \(State \times Label \times State \)

A transition : \(e \in Label, x \in State \) et \(y \in State \)

\((x, e, y) \in State \times Label \times State \) will be noted \(x \xrightarrow{e} y \)

In the following, depending on the intent of the semantics, the set \(T \) or the events \(E \) will be used as labels in the transition systems.
Definition of APN transition system

Definition (Transition system)

Given a model A of a specification $Spec$, and an algebraic Petri net specification N-SPEC $= \langle Spec, T, P, X, AX \rangle$, a transition system over A and N-SPEC is a set $TS_A(N$-SPEC $) \subseteq M^A \times T \times M^A$. Its elements, called state transitions, are noted $m \xrightarrow{t} m'$, where $m, m' \in M^A$, $t \in T$. We have : $(m \xrightarrow{t} m') \in TS_A(N$-SPEC $)$ iff there exists an interpretation σ s.t. :

- $\exists \langle t, Cond, In, Out \rangle \in AX$ choice of axiom
- $\forall p \in P, \llbracket In_p \rrbracket^A_\sigma \subseteq m(p)$
- $\forall p \in P, m'(p) + \llbracket In_p \rrbracket^A_\sigma = m(p) + \llbracket Out_p \rrbracket^A_\sigma$.

Didier Buchs

Algebraic Petri nets
Definition (Initially marked transition system)

Let \(\langle N\text{-SPEC}, m_{\text{init}} \rangle \) be an initially marked algebraic Petri net. Then an "initially marked transition system"
\[TS_A(\langle N\text{-SPEC}, m_{\text{init}} \rangle) \subseteq TS_A(N\text{-SPEC}) \]
is the set of state transitions of \(TS_A(N\text{-SPEC}) \) transitively connected to the marking \(\left[m_{\text{init}} \right]_A^\sigma \) by the transition relation (\(\sigma \) being an interpretation).
Transition system of the example
Observations on the transition system

- Atomicity of the transition firing
- Extension to step semantics
 - Extend to multiset of events
 - Conjunction of conditions
 - Sum of pre/post conditions
- Labelling with/without interpretation
 - $x \overset{t,l}{\rightarrow} y$
 - $x \overset{t}{\rightarrow} y$
Implicit vs explicit conditions

\[
\text{end: counter } 0, \text{ total } s \rightarrow \\
\text{result } s;
\]

Which is equivalent to:

\[
\text{end: } (c=0) \Rightarrow \\
\text{counter } c, \text{ total } s \rightarrow \\
\text{result } s;
\]

There is a normal form, where axioms are written with only variables in the pre-conditions. In conditions and post-condition terms are allowed.
free vs bounded variables

bound:

numbers n ... ->

...;

is bounded if it appears in the pre-condition.

free:

... ->

result s;

is free if it appears only in the post-condition (and not indirectly linked by conditions).
These variables are universally quantified, leading to potentially infinite branching of the TS.
Definition (Strong Bisimulation)

A *strong bisimulation* between two transition systems TS_1, TS_2 is the relation $R \subseteq \text{State}(TS_1) \times \text{State}(TS_2)$ such that :

- if $st_1 \mathrel{R} st_2$ and $st_1 \xrightarrow{e} st'_1 \in TS_1$ then there is $st_2 \xrightarrow{e} st'_2 \in TS_2$ such that $st'_1 \mathrel{R} st'_2$;
- if $st_1 \mathrel{R} st_2$ and $st_2 \xrightarrow{e} st'_2 \in TS_2$ then there is $st_1 \xrightarrow{e} st'_1 \in TS_1$ such that $st'_1 \mathrel{R} st'_2$;
- $st_1^{\text{init}} \mathrel{R} st_2^{\text{init}}$

We say that TS_1 and TS_2 are *strongly bisimilar*, if there exists such a non-empty relation R, and we denote this by $TS_1 \iff TS_2$.

Didier Buchs

Algebraic Petri nets
Exemple of bisimulation

Masking of hidden choice:

Diagram:

- States: s0, s1, s2, s3, s4, r0, r1, r2, r3
- Transitions: a, b

- s0 transitions to s1 with a, to r0 with a
- s1 transitions to s3 with b
- s2 transitions to s4 with b
- r0 transitions to r1 with a
- r1 transitions to r2 and r3 with b
- s3 and s4 are not connected to any other states
- r2 and r3 are not connected to any other states
Exemple of bisimulation

Discrimination of choices:

![Diagram showing discrimination of choices](image-url)
Remarks on bisimulation

The bisimulation has properties such as:

- it abstracts states
- it is more discriminant than trace equivalence
- it is less constraining than isomorphism
- it is fully abstract wrt branching temporal logics (CTL)\(^1\)

The effect of the change of algebra (for instance \(A, B \in \text{Alg}(\text{spec})\)) on equivalence, is also linked to observations of the algebras.

\(A =? = B \Rightarrow (TS_A(SP) \Leftrightarrow TS_B(SP))\)\(^2\)

Use of bisimulation to define an implementation relation:

\(SP \models P \Leftrightarrow (TS(SP) \Leftrightarrow TS(P)|_{SP})\)

1. Modulo well chosen atomic propositions
2. The equivalence relation \(=? =\) should take into account similar effect of the \(\subseteq\), cond constraint of the semantic rule. In the general case, unfortunately, isomorphism between algebra is required. On a limited set of possible expression better constraint can apply.
Summary

- We have defined an abstract syntax for algebraic Petri Nets\(^3\)
- The semantics of APN was defined as transition system\(^4\)
- Equivalence of similar systems is defined by bisimulation.
- Implementation notions based on bisimulation have been proposed

3. a concrete one is defined for the COOPNBuilder tool
4. an abstract syntax and semantics is defined as ISO/IEC 15909-1 :2004 standard for High Level Nets